Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Linear Convergence Analysis of Primal-Dual Splitting Methods (1705.01926v4)

Published 4 May 2017 in math.OC

Abstract: In this paper, we study the local linear convergence properties of a versatile class of Primal-Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework we first show that (i) the sequences generated by Primal-Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal-Dual splitting can be specialized to cover existing ones on Forward-Backward splitting and Douglas-Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning, etc. The demonstration not only verifies the local linear convergence behaviour of Primal-Dual splitting methods, but also the insights on how to accelerate them in practice.

Summary

We haven't generated a summary for this paper yet.