Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A higher-order MRF based variational model for multiplicative noise reduction (1404.5344v3)

Published 21 Apr 2014 in cs.CV

Abstract: The Fields of Experts (FoE) image prior model, a filter-based higher-order Markov Random Fields (MRF) model, has been shown to be effective for many image restoration problems. Motivated by the successes of FoE-based approaches, in this letter, we propose a novel variational model for multiplicative noise reduction based on the FoE image prior model. The resulted model corresponds to a non-convex minimization problem, which can be solved by a recently published non-convex optimization algorithm. Experimental results based on synthetic speckle noise and real synthetic aperture radar (SAR) images suggest that the performance of our proposed method is on par with the best published despeckling algorithm. Besides, our proposed model comes along with an additional advantage, that the inference is extremely efficient. {Our GPU based implementation takes less than 1s to produce state-of-the-art despeckling performance.}

Citations (34)

Summary

We haven't generated a summary for this paper yet.