Improved ESP-index: a practical self-index for highly repetitive texts (1404.4972v2)
Abstract: While several self-indexes for highly repetitive texts exist, developing a practical self-index applicable to real world repetitive texts remains a challenge. ESP-index is a grammar-based self-index on the notion of edit-sensitive parsing (ESP), an efficient parsing algorithm that guarantees upper bounds of parsing discrepancies between different appearances of the same subtexts in a text. Although ESP-index performs efficient top-down searches of query texts, it has a serious issue on binary searches for finding appearances of variables for a query text, which resulted in slowing down the query searches. We present an improved ESP-index (ESP-index-I) by leveraging the idea behind succinct data structures for large alphabets. While ESP-index-I keeps the same types of efficiencies as ESP-index about the top-down searches, it avoid the binary searches using fast rank/select operations. We experimentally test ESP-index-I on the ability to search query texts and extract subtexts from real world repetitive texts on a large-scale, and we show that ESP-index-I performs better that other possible approaches.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.