Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion with resetting in arbitrary spatial dimension (1404.4574v1)

Published 17 Apr 2014 in cond-mat.stat-mech

Abstract: We consider diffusion in arbitrary spatial dimension d with the addition of a resetting process wherein the diffusive particle stochastically resets to a fixed position at a constant rate $r$. We compute the non-equilibrium stationary state which exhibits non-Gaussian behaviour. We then consider the presence of an absorbing target centred at the origin and compute the survival probability and mean time to absorption of the diffusive particle by the target. The mean absorption time is finite and has a minimum value at an optimal resetting rate $r*$ which depends on dimension. Finally we consider the problem of a finite density of diffusive particles, each resetting to its own initial position. While the typical survival probability of the target at the origin decays exponentially with time regardless of spatial dimension, the average survival probability decays asymptotically as $\exp -A (\log t)d$ where $A$ is a constant. We explain these findings using an interpretation as a renewal process and arguments invoking extreme value statistics.

Summary

We haven't generated a summary for this paper yet.