Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Linear Interactive Matrix Factorization (1404.1653v2)

Published 7 Apr 2014 in cs.IR

Abstract: Recommender systems, which can significantly help users find their interested items from the information era, has attracted an increasing attention from both the scientific and application society. One of the widest applied recommendation methods is the Matrix Factorization (MF). However, most of MF based approaches focus on the user-item rating matrix, but ignoring the ingredients which may have significant influence on users' preferences on items. In this paper, we propose a multi-linear interactive MF algorithm (MLIMF) to model the interactions between the users and each event associated with their final decisions. Our model considers not only the user-item rating information but also the pairwise interactions based on some empirically supported factors. In addition, we compared the proposed model with three typical other methods: user-based collaborative filtering (UCF), item-based collaborative filtering (ICF) and regularized MF (RMF). Experimental results on two real-world datasets, \emph{MovieLens} 1M and \emph{MovieLens} 100k, show that our method performs much better than other three methods in the accuracy of recommendation. This work may shed some light on the in-depth understanding of modeling user online behaviors and the consequent decisions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lu Yu (87 papers)
  2. Chuang Liu (71 papers)
  3. Zi-Ke Zhang (48 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.