Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Feature Selection in Classification of Audio Files (1404.1491v1)

Published 24 Mar 2014 in cs.LG

Abstract: In this paper we have focused on an efficient feature selection method in classification of audio files. The main objective is feature selection and extraction. We have selected a set of features for further analysis, which represents the elements in feature vector. By extraction method we can compute a numerical representation that can be used to characterize the audio using the existing toolbox. In this study Gain Ratio (GR) is used as a feature selection measure. GR is used to select splitting attribute which will separate the tuples into different classes. The pulse clarity is considered as a subjective measure and it is used to calculate the gain of features of audio files. The splitting criterion is employed in the application to identify the class or the music genre of a specific audio file from testing database. Experimental results indicate that by using GR the application can produce a satisfactory result for music genre classification. After dimensionality reduction best three features have been selected out of various features of audio file and in this technique we will get more than 90% successful classification result.

Citations (5)

Summary

We haven't generated a summary for this paper yet.