Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

An Improvement over the GVW Algorithm for Inhomogeneous Polynomial Systems (1404.1428v2)

Published 5 Apr 2014 in cs.SC

Abstract: The GVW algorithm is a signature-based algorithm for computing Gr\"obner bases. If the input system is not homogeneous, some J-pairs with higher signatures but lower degrees are rejected by GVW's Syzygy Criterion, instead, GVW have to compute some J-pairs with lower signatures but higher degrees. Consequently, degrees of polynomials appearing during the computations may unnecessarily grow up higher and the computation become more expensive. In this paper, a variant of the GVW algorithm, called M-GVW, is proposed and mutant pairs are introduced to overcome inconveniences brought by inhomogeneous input polynomials. Some techniques from linear algebra are used to improve the efficiency. Both GVW and M-GVW have been implemented in C++ and tested by many examples from boolean polynomial rings. The timings show M-GVW usually performs much better than the original GVW algorithm when mutant pairs are found. Besides, M-GVW is also compared with intrinsic Gr\"obner bases functions on Maple, Singular and Magma. Due to the efficient routines from the M4RI library, the experimental results show that M-GVW is very efficient.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube