Bayes and Naive Bayes Classifier
Abstract: The Bayesian Classification represents a supervised learning method as well as a statistical method for classification. Assumes an underlying probabilistic model and it allows us to capture uncertainty about the model in a principled way by determining probabilities of the outcomes. This Classification is named after Thomas Bayes (1702-1761), who proposed the Bayes Theorem. Bayesian classification provides practical learning algorithms and prior knowledge and observed data can be combined. Bayesian Classification provides a useful perspective for understanding and evaluating many learning algorithms. It calculates explicit probabilities for hypothesis and it is robust to noise in input data. In statistical classification the Bayes classifier minimises the probability of misclassification. That was a visual intuition for a simple case of the Bayes classifier, also called: 1)Idiot Bayes 2)Naive Bayes 3)Simple Bayes
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.