Papers
Topics
Authors
Recent
2000 character limit reached

Bayes and Naive Bayes Classifier

Published 3 Apr 2014 in cs.LG | (1404.0933v1)

Abstract: The Bayesian Classification represents a supervised learning method as well as a statistical method for classification. Assumes an underlying probabilistic model and it allows us to capture uncertainty about the model in a principled way by determining probabilities of the outcomes. This Classification is named after Thomas Bayes (1702-1761), who proposed the Bayes Theorem. Bayesian classification provides practical learning algorithms and prior knowledge and observed data can be combined. Bayesian Classification provides a useful perspective for understanding and evaluating many learning algorithms. It calculates explicit probabilities for hypothesis and it is robust to noise in input data. In statistical classification the Bayes classifier minimises the probability of misclassification. That was a visual intuition for a simple case of the Bayes classifier, also called: 1)Idiot Bayes 2)Naive Bayes 3)Simple Bayes

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.