Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Sampling a Uniform Random Solution of a Quadratic Equation Modulo $p^k$ (1404.0281v2)

Published 1 Apr 2014 in cs.DS, cs.DM, math.NT, and math.RA

Abstract: An $n$-ary integral quadratic form is a formal expression $Q(x_1,...,x_n)=\sum_{1\leq i,j\leq n}a_{ij}x_ix_j$ in $n$-variables $x_1,...,x_n$, where $a_{ij}=a_{ji} \in \mathbb{Z}$. We present a poly$(n,k, \log p, \log t)$ randomized algorithm that given a quadratic form $Q(x_1,...,x_n)$, a prime $p$, a positive integer $k$ and an integer $t$, samples a uniform solution of $Q(x_1,...,x_n)\equiv t \bmod{pk}$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.