Computation of Maximum Likelihood Estimates for Multiresponse Generalized Linear Mixed Models with Non-nested, Correlated Random Effects (1403.7676v1)
Abstract: Estimation of generalized linear mixed models (GLMMs) with non-nested random effects structures requires approximation of high-dimensional integrals. Many existing methods are tailored to the low-dimensional integrals produced by nested designs. We explore the modifications that are required in order to adapt an EM algorithm with first-order and fully exponential Laplace approximations to a non-nested, multiple response model. The equations in the estimation routine are expressed as functions of the first four derivatives of the conditional likelihood of an arbitrary GLMM, providing a template for future applications. We apply the method to a joint Poisson-binary model for ranking sporting teams, and discuss the estimation of a correlated random effects model designed to evaluate the sensitivity of value-added models for teacher evaluation to assumptions about the missing data process. Source code in R is provided in the online supplementary material.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.