Convergence of Stochastic Proximal Gradient Algorithm (1403.5074v3)
Abstract: We prove novel convergence results for a stochastic proximal gradient algorithm suitable for solving a large class of convex optimization problems, where a convex objective function is given by the sum of a smooth and a possibly non-smooth component. We consider the iterates convergence and derive $O(1/n)$ non asymptotic bounds in expectation in the strongly convex case, as well as almost sure convergence results under weaker assumptions. Our approach allows to avoid averaging and weaken boundedness assumptions which are often considered in theoretical studies and might not be satisfied in practice.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.