Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New nonasymptotic convergence rates of stochastic proximal pointalgorithm for convex optimization problems (1901.08663v4)

Published 22 Jan 2019 in math.OC, cs.LG, and stat.ML

Abstract: Large sectors of the recent optimization literature focused in the last decade on the development of optimal stochastic first order schemes for constrained convex models under progressively relaxed assumptions. Stochastic proximal point is an iterative scheme born from the adaptation of proximal point algorithm to noisy stochastic optimization, with a resulting iteration related to stochastic alternating projections. Inspired by the scalability of alternating projection methods, we start from the (linear) regularity assumption, typically used in convex feasiblity problems to guarantee the linear convergence of stochastic alternating projection methods, and analyze a general weak linear regularity condition which facilitates convergence rate boosts in stochastic proximal point schemes. Our applications include many non-strongly convex functions classes often used in machine learning and statistics. Moreover, under weak linear regularity assumption we guarantee $\mathcal{O}\left(\frac{1}{k}\right)$ convergence rate for SPP, in terms of the distance to the optimal set, using only projections onto a simple component set. Linear convergence is obtained for interpolation setting, when the optimal set of the expected cost is included into the optimal sets of each functional component.

Summary

We haven't generated a summary for this paper yet.