2000 character limit reached
Measure of nodal sets of analytic Steklov eigenfunctions (1403.0647v1)
Published 4 Mar 2014 in math.SP
Abstract: Let $(\Omega, g)$ be a real analytic Riemannian manifold with real analytic boundary $\partial \Omega$. Let $\psi_{\lambda}$ be an eigenfunction of the Dirichlet-to-Neumann operator $\Lambda$ of $(\Omega, g, \partial \Omega)$ of eigenvalue $\lambda$. Let $\mathcal N_{\lambda_j}$ be its nodal set. Then $\mathcal H{n-2} (\mathcal N_{\lambda}) \leq C_{g, \Omega} \lambda.$ This proves a conjecture of F. H. Lin and K. Bellova.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.