Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Privacy in Metric Spaces: Numerical, Categorical and Functional Data Under the One Roof (1402.6124v1)

Published 25 Feb 2014 in cs.DB, cs.IT, math.IT, and math.PR

Abstract: We study Differential Privacy in the abstract setting of Probability on metric spaces. Numerical, categorical and functional data can be handled in a uniform manner in this setting. We demonstrate how mechanisms based on data sanitisation and those that rely on adding noise to query responses fit within this framework. We prove that once the sanitisation is differentially private, then so is the query response for any query. We show how to construct sanitisations for high-dimensional databases using simple 1-dimensional mechanisms. We also provide lower bounds on the expected error for differentially private sanitisations in the general metric space setting. Finally, we consider the question of sufficient sets for differential privacy and show that for relaxed differential privacy, any algebra generating the Borel $\sigma$-algebra is a sufficient set for relaxed differential privacy.

Citations (27)

Summary

We haven't generated a summary for this paper yet.