Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entropic uncertainty from effective anti-commutators

Published 24 Feb 2014 in quant-ph | (1402.5722v1)

Abstract: We investigate entropic uncertainty relations for two or more binary measurements, for example spin-$\frac{1}{2}$ or polarisation measurements. We argue that the effective anti-commutators of these measurements, i.e. the anti-commutators evaluated on the state prior to measuring, are an expedient measure of measurement incompatibility. Based on the knowledge of pairwise effective anti-commutators we derive a class of entropic uncertainty relations in terms of conditional R\'{e}nyi entropies. Our uncertainty relations are formulated in terms of effective measures of incompatibility, which can be certified device-independently. Consequently, we discuss potential applications of our findings to device-independent quantum cryptography. Moreover, to investigate the tightness of our analysis we consider the simplest (and very well-studied) scenario of two measurements on a qubit. We find that our results outperform the celebrated bound due to Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988)] and provide a new analytical expression for the minimum uncertainty which also outperforms some recent bounds based on majorisation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.