Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Aggregation in Exponential Family Markets (1402.5458v1)

Published 22 Feb 2014 in cs.AI, cs.GT, and stat.ML

Abstract: We consider the design of prediction market mechanisms known as automated market makers. We show that we can design these mechanisms via the mold of \emph{exponential family distributions}, a popular and well-studied probability distribution template used in statistics. We give a full development of this relationship and explore a range of benefits. We draw connections between the information aggregation of market prices and the belief aggregation of learning agents that rely on exponential family distributions. We develop a very natural analysis of the market behavior as well as the price equilibrium under the assumption that the traders exhibit risk aversion according to exponential utility. We also consider similar aspects under alternative models, such as when traders are budget constrained.

Citations (24)

Summary

We haven't generated a summary for this paper yet.