Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieval of Experiments by Efficient Estimation of Marginal Likelihood (1402.4653v1)

Published 19 Feb 2014 in stat.ML, cs.IR, and cs.LG

Abstract: We study the task of retrieving relevant experiments given a query experiment. By experiment, we mean a collection of measurements from a set of covariates' and the associatedoutcomes'. While similar experiments can be retrieved by comparing available `annotations', this approach ignores the valuable information available in the measurements themselves. To incorporate this information in the retrieval task, we suggest employing a retrieval metric that utilizes probabilistic models learned from the measurements. We argue that such a metric is a sensible measure of similarity between two experiments since it permits inclusion of experiment-specific prior knowledge. However, accurate models are often not analytical, and one must resort to storing posterior samples which demands considerable resources. Therefore, we study strategies to select informative posterior samples to reduce the computational load while maintaining the retrieval performance. We demonstrate the efficacy of our approach on simulated data with simple linear regression as the models, and real world datasets.

Summary

We haven't generated a summary for this paper yet.