Papers
Topics
Authors
Recent
2000 character limit reached

On the number of real roots of random polynomials

Published 19 Feb 2014 in math.PR and math.CO | (1402.4628v1)

Abstract: Roots of random polynomials have been studied exclusively in both analysis and probability for a long time. A famous result by Ibragimov and Maslova, generalizing earlier fundamental works of Kac and Erdos-Offord, showed that the expectation of the number of real roots is $\frac{2}{\pi} \log n + o(\log n)$. In this paper, we determine the true nature of the error term by showing that the expectation equals $\frac{2}{\pi}\log n + O(1)$. Prior to this paper, such estimate has been known only in the gaussian case, thanks to works of Edelman and Kostlan.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.