Real roots of random polynomials: asymptotics of the variance (2303.05478v3)
Abstract: We compute the precise leading asymptotics of the variance of the number of real roots for a large class of random polynomials, where the random coefficients have polynomial growth. Our results apply to many classical ensembles, including the Kac polynomials, hyperbolic polynomials, their derivatives, and any linear combinations of these polynomials. Prior to this paper, such asymptotics were established only for the Kac polynomials in the 1970s, with the seminal contribution of Maslova. The main ingredients of the proof are new asymptotic estimates for the two-point correlation function of the real roots, revealing geometric structures in the distribution of the real roots of these random polynomials. As a corollary, we obtain asymptotic normality for the real roots of these random polynomials, extending and strengthening a related result of O. Nguyen and V. Vu.
- CLT for the zeros of classical random trigonometric polynomials, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 2, 804–820. MR3498010
- J. M. Azaïs and J. Leon, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013) no. 68, 1–17. MR3084654
- Non universality for the variance of the number of real roots of random trigonometric polynomials, Probab. Theory Related Fields 174 (2019), no. 3-4, 887–927. MR3980307
- A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Probab. Math. Statist., Academic Press, Inc., Orlando, FL, 1986. MR0856019
- Correlations between zeros of a random polynomial, J. Stat. Phys. 88 (1997), no. 1-2, 269–305. MR1468385
- On the roots of certain algebraic equations, Proc. London Math. Soc. (2) 33 (1932), no. 2, 102–114. MR1576817
- F. Dalmao, Asymptotic variance and CLT for the number of zeros of Kostlan Shub Smale random polynomials, C. R. Math. Acad. Sci. Paris 353 (2015), no. 12, 1141–1145. MR3427922
- M. Das, The average number of maxima of a random algebraic curve, Proc. Cambridge Philos. Soc. 65 (1969), 741–753. MR0239669
- M. Das, Real zeros of a class of random algebraic polynomials, J. Indian Math. Soc. (N.S.) 36 (1972), 53–63. MR0322960
- No zero-crossings for random polynomials and the heat equation, Ann. Probab. 43 (2015), no. 1, 85–118. MR3298469
- Y. Do, Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications, Electron. J. Probab. 26 (2021), Paper No. 144, 45 pp. MR4346676
- Random trigonometric polynomials: universality and non-universality of the variance for the number of real roots, Ann. Inst. H. Poincaré Probab. Statist. 58 (2022), no. 3, 1460–1504. MR4452640
- Central Limit Theorem for the number of real roots of random orthogonal polynomials, Ann. Inst. H. Poincaré Probab. Statist., to appear. Available at https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/
- Real roots of random polynomials: expectation and repulsion, Proc. Lond. Math. Soc. (3) 111 (2015), no. 6, 1231–1260. MR3447793
- Roots of random polynomials with coefficients of polynomial growth, Ann. Probab. 46 (2018), no. 5, 2407–2494. MR3846831
- Central limit theorems for the real zeros of Weyl polynomials, Amer. J. Math. 142 (2020), no. 5, 1327–1369. MR4150647
- How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1–37. MR1290398
- P. Erdős and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3) 6 (1956), 139–160. MR0073870
- K. Farahmand, Topics in Random Polynomials, Pitman Research Notes in Mathematics Series, 393, Longman, Harlow, 1998. MR1679392
- J. B. Garnett, Bounded analytic functions, Revised first edition, Graduate Texts in Mathematics, 236, Springer, New York, 2007. MR2261424
- L. Gass, Variance of the number of zeros of dependent Gaussian trigonometric polynomials, Proc. Amer. Math. Soc. 151 (2023), 2225–2239. MR4556213
- The distribution of the zeros of random trigonometric polynomials, Amer. J. Math. 133 (2011), no. 2, 295–357. MR2797349
- Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, American Mathematical Society, Providence, RI, 2009, x+154 pp. MR2552864
- I. A. Ibragimov and N. B. Maslova, The average number of zeros of random polynomials, Vestnik Leningrad. Univ. 23 (1968), no. 19, 171–172. MR0238376
- I. A. Ibragimov and N. B. Maslova, The average number of real roots of random polynomials, Dokl. Akad. Nauk SSSR 199 (1971), 13–16. MR0292134
- I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero means, Teor. Verojatnost. i Primenen. 16 (1971), 229–248. MR0286157 [English translation: Theory Probab. Appl. 16 (1971), no. 2, 228–248. https://doi.org/10.1137/1116023]
- M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320. MR0007812
- E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), 419–431, Springer, New York, 1993. MR1246137
- The number of limit cycles bifurcating from a randomly perturbed center, preprint, arXiv:2112.05672v2, 2022.
- L. Lewin, Polylogarithms and associated functions. With a foreword by A. J. Van der Poorten, North-Holland Publishing Co., New York-Amsterdam, 1981. MR0618278
- J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 277–286. MR0009656
- J. E. Littlewood and A. C. Offord, On the distribution of the zeros and a𝑎aitalic_a-values of a random integral function. I, J. London Math. Soc. 20 (1945), 130–136. MR0019123
- J. E. Littlewood and A. C. Offord, On the distribution of zeros and a𝑎aitalic_a-values of a random integral function. II, Ann. of Math. (2) 49 (1948), 885–952; errata 50 (1949), 990–991. MR0029981
- D. S. Lubinsky and I. E. Pritsker, Variance of real zeros of random orthogonal polynomials, J. Math. Anal. Appl. 498 (2021), Paper No. 124954, 32 pp. MR4202193
- D. S. Lubinsky and I. E. Pritsker, Variance of real zeros of random orthogonal polynomials for varying and exponential weights, Electron. J. Probab. 27 (2022), Paper No. 83, 32 pp. MR4444378
- N. B. Maslova, The variance of the number of real roots of random polynomials, Teor. Verojatnost. i Primenen. 19 (1974), 36–51. MR0334327 [English translation: Theory Probab. Appl. 19 (1974), no. 1, 35–52. https://doi.org/10.1137/1119004]
- N. B. Maslova, The distribution of the number of real roots of random polynomials, Teor. Verojatnost. i Primenen. 19 (1974), 488–500. MR0368136 [English translation: Theory Probab. Appl. 19 (1974), no. 3, 461–473. https://doi.org/10.1137/1119055]
- On the number of real roots of random polynomials, Commun. Contemp. Math. 18 (2016), no. 4, 1550052, 17 pp. MR3493213
- N. D. V. Nguyen, The number of real zeros of elliptic polynomials, preprint, arXiv:2111.10875v3, submitted.
- Random polynomials: central limit theorems for the real roots, Duke Math. J. 170 (2022), no. 17, 3745–3813. MR4340724
- J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Second edition, Graduate Texts in Mathematics, 149, Springer, New York, 2006. MR2249478
- M. Sambandham, On the average number of real zeros of a class of random algebraic curves, Pacific J. Math. 81 (1979), no. 1, 207–215. MR0543744
- The average number of point [points] of inflection of random algebraic polynomials, Stochastic Anal. Appl. 16 (1998), no. 4, 721–731. MR1632566
- On the variance of the number of real roots of random algebraic polynomials, Stochastic Anal. Appl. 1 (1983), no. 2, 215–238. MR0699265
- G. Schehr and S. N. Majumdar, Statistics of the number of zero crossings: from random polynomials to the diffusion equation, Phys. Rev. Lett. 99 (2007), 060603. DOI: 10.1103/PhysRevLett.99.060603
- G. Schehr and S. N. Majumdar, Real roots of random polynomials and zero crossing properties of diffusion equation, J. Stat. Phys. 132 (2008), no. 2, 235–273. MR2415102
- D. C. Stevens, The average number of real zeros of a random polynomial, Comm. Pure Appl. Math. 22 (1969), 457–477. MR0251003
- Local universality of zeroes of random polynomials, Int. Math. Res. Not. IMRN 2015, no. 13, 5053–5139. MR3439098
- C. Truesdell, On a function which occurs in the theory of the structure of polymers, Ann. of Math. (2) 46 (1945), 144–157. MR0011344
- J. E. Wilkins Jr., An asymptotic expansion for the expected number of real zeros of a random polynomial, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1249–1258. MR0955018
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.