Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realtime Multilevel Crowd Tracking using Reciprocal Velocity Obstacles (1402.2826v1)

Published 11 Feb 2014 in cs.CV

Abstract: We present a novel, realtime algorithm to compute the trajectory of each pedestrian in moderately dense crowd scenes. Our formulation is based on an adaptive particle filtering scheme that uses a multi-agent motion model based on velocity-obstacles, and takes into account local interactions as well as physical and personal constraints of each pedestrian. Our method dynamically changes the number of particles allocated to each pedestrian based on different confidence metrics. Additionally, we use a new high-definition crowd video dataset, which is used to evaluate the performance of different pedestrian tracking algorithms. This dataset consists of videos of indoor and outdoor scenes, recorded at different locations with 30-80 pedestrians. We highlight the performance benefits of our algorithm over prior techniques using this dataset. In practice, our algorithm can compute trajectories of tens of pedestrians on a multi-core desktop CPU at interactive rates (27-30 frames per second). To the best of our knowledge, our approach is 4-5 times faster than prior methods, which provide similar accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aniket Bera (92 papers)
  2. Dinesh Manocha (366 papers)
Citations (58)

Summary

We haven't generated a summary for this paper yet.