Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deeply Coupled Auto-encoder Networks for Cross-view Classification (1402.2031v1)

Published 10 Feb 2014 in cs.CV, cs.LG, and cs.NE

Abstract: The comparison of heterogeneous samples extensively exists in many applications, especially in the task of image classification. In this paper, we propose a simple but effective coupled neural network, called Deeply Coupled Autoencoder Networks (DCAN), which seeks to build two deep neural networks, coupled with each other in every corresponding layers. In DCAN, each deep structure is developed via stacking multiple discriminative coupled auto-encoders, a denoising auto-encoder trained with maximum margin criterion consisting of intra-class compactness and inter-class penalty. This single layer component makes our model simultaneously preserve the local consistency and enhance its discriminative capability. With increasing number of layers, the coupled networks can gradually narrow the gap between the two views. Extensive experiments on cross-view image classification tasks demonstrate the superiority of our method over state-of-the-art methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.