The shape of expansion induced by a line with fast diffusion in Fisher-KPP equations
Abstract: We establish a new property of Fisher-KPP type propagation in a plane, in the presence of a line with fast diffusion. We prove that the line enhances the asymptotic speed of propagation in a cone of directions. Past the critical angle given by this cone, the asymptotic speed of propagation coincides with the classical Fisher-KPP invasion speed. Several qualitative properties are further derived, such as the limiting behaviour when the diffusion on the line goes to infinity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.