The Fisher-KPP problem with doubly nonlinear "fast" diffusion (1607.01338v1)
Abstract: The famous Fisher-KPP reaction diffusion model combines linear diffusion with the typical Fisher-KPP reaction term, and appears in a number of relevant applications. It is remarkable as a mathematical model since, in the case of linear diffusion, it possesses a family of travelling waves that describe the asymptotic behaviour of a wide class solutions $0\leq u(x,t)\leq 1$ of the problem posed in the real line. The existence of propagation wave with finite speed has been confirmed in the cases of "slow" and "pseudo-linear" doubly nonlinear diffusion too, see arXiv:1601.05718. We investigate here the corresponding theory with "fast" doubly nonlinear diffusion and we find that general solutions show a non-TW asymptotic behaviour, and exponential propagation in space for large times. Finally, we prove precise bounds for the level sets of general solutions, even when we work in with spacial dimension $N \geq 1$. In particular, we show that location of the level sets is approximately linear for large times, when we take spatial logarithmic scale, finding a strong departure from the linear case, in which appears the famous Bramson logarithmic correction.