Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Anti-coordination Through Multi-agent Learning (1402.0583v1)

Published 4 Feb 2014 in cs.GT and cs.MA

Abstract: To achieve an optimal outcome in many situations, agents need to choose distinct actions from one another. This is the case notably in many resource allocation problems, where a single resource can only be used by one agent at a time. How shall a designer of a multi-agent system program its identical agents to behave each in a different way? From a game theoretic perspective, such situations lead to undesirable Nash equilibria. For example consider a resource allocation game in that two players compete for an exclusive access to a single resource. It has three Nash equilibria. The two pure-strategy NE are efficient, but not fair. The one mixed-strategy NE is fair, but not efficient. Aumanns notion of correlated equilibrium fixes this problem: It assumes a correlation device that suggests each agent an action to take. However, such a "smart" coordination device might not be available. We propose using a randomly chosen, "stupid" integer coordination signal. "Smart" agents learn which action they should use for each value of the coordination signal. We present a multi-agent learning algorithm that converges in polynomial number of steps to a correlated equilibrium of a channel allocation game, a variant of the resource allocation game. We show that the agents learn to play for each coordination signal value a randomly chosen pure-strategy Nash equilibrium of the game. Therefore, the outcome is an efficient correlated equilibrium. This CE becomes more fair as the number of the available coordination signal values increases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ludek Cigler (1 paper)
  2. Boi Faltings (76 papers)
Citations (23)