Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Focusing Testing by Using Inspection and Product Metrics (1401.7758v2)

Published 30 Jan 2014 in cs.SE

Abstract: A well-known approach for identifying defect-prone parts of software in order to focus testing is to use different kinds of product metrics such as size or complexity. Although this approach has been evaluated in many contexts, the question remains if there are further opportunities to improve test focusing. One idea is to identify other types of information that may indicate the location of defect-prone software parts. Data from software inspections, in particular, appear to be promising. This kind of data might already lead to software parts that have inherent difficulties or programming challenges, and in consequence might be defect-prone. This article first explains how inspection and product metrics can be used to focus testing activities. Second, we compare selected product and inspection metrics commonly used to predict defect-prone parts (e.g., size and complexity metrics, inspection defect content metrics, and defect density metrics). Based on initial experience from two case studies performed in different environments, the suitability of different metrics for predicting defect-prone parts is illustrated. The studies revealed that inspection defect data seems to be a suitable predictor, and a combination of certain inspection and product metrics led to the best prioritizations in our contexts. In addition, qualitative experience is presented, which substantiates the expected benefit of using inspection results to optimize testing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Frank Elberzhager (12 papers)
  2. Stephan Kremer (2 papers)
  3. Jürgen Münch (63 papers)
  4. Danilo Assmann (2 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.