Papers
Topics
Authors
Recent
2000 character limit reached

The Dynamical Mordell-Lang problem (1401.6659v1)

Published 26 Jan 2014 in math.NT, math.AG, and math.DS

Abstract: Let X be a Noetherian space, let f be a continuous self-map on X, let Y be a closed subset of X, and let x be a point on X. We show that the set S consisting of all nonnegative integers n such that fn(x) is in Y is a union of at most finitely many arithmetic progressions along with a set of Banach density zero. In particular, we obtain that given any quasi-projective variety X, any rational self-map map f on X, any subvariety Y of X, and any point x in X whose orbit under f is in the domain of definition for f, the set S is a finite union of arithmetic progressions together with a set of Banach density zero. We prove a similar result for the backward orbit of a point.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.