Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guaranteed Scalable Learning of Latent Tree Models (1406.4566v4)

Published 18 Jun 2014 in cs.LG and stat.ML

Abstract: We present an integrated approach for structure and parameter estimation in latent tree graphical models. Our overall approach follows a "divide-and-conquer" strategy that learns models over small groups of variables and iteratively merges onto a global solution. The structure learning involves combinatorial operations such as minimum spanning tree construction and local recursive grouping; the parameter learning is based on the method of moments and on tensor decompositions. Our method is guaranteed to correctly recover the unknown tree structure and the model parameters with low sample complexity for the class of linear multivariate latent tree models which includes discrete and Gaussian distributions, and Gaussian mixtures. Our bulk asynchronous parallel algorithm is implemented in parallel and the parallel computation complexity increases only logarithmically with the number of variables and linearly with dimensionality of each variable.

Citations (7)

Summary

We haven't generated a summary for this paper yet.