Papers
Topics
Authors
Recent
Search
2000 character limit reached

Group Testing with Prior Statistics

Published 15 Jan 2014 in cs.IT and math.IT | (1401.3667v8)

Abstract: We consider a new group testing model wherein each item is a binary random variable defined by an a priori probability of being defective. We assume that each probability is small and that items are independent, but not necessarily identically distributed. The goal of group testing algorithms is to identify with high probability the subset of defectives via non-linear (disjunctive) binary measurements. Our main contributions are two classes of algorithms: (1) adaptive algorithms with tests based either on a maximum entropy principle, or on a Shannon-Fano/Huffman code; (2) non-adaptive algorithms. Under loose assumptions and with high probability, our algorithms only need a number of measurements that is close to the information-theoretic lower bound, up to an explicitly-calculated universal constant factor. We provide simulations to support our results.

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.