Papers
Topics
Authors
Recent
2000 character limit reached

A semiparametric approach to mixed outcome latent variable models: Estimating the association between cognition and regional brain volumes (1401.2728v1)

Published 13 Jan 2014 in stat.AP

Abstract: Multivariate data that combine binary, categorical, count and continuous outcomes are common in the social and health sciences. We propose a semiparametric Bayesian latent variable model for multivariate data of arbitrary type that does not require specification of conditional distributions. Drawing on the extended rank likelihood method by Hoff [Ann. Appl. Stat. 1 (2007) 265-283], we develop a semiparametric approach for latent variable modeling with mixed outcomes and propose associated Markov chain Monte Carlo estimation methods. Motivated by cognitive testing data, we focus on bifactor models, a special case of factor analysis. We employ our semiparametric Bayesian latent variable model to investigate the association between cognitive outcomes and MRI-measured regional brain volumes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.