Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Various Confidence Intervals Post-Model-Selection (1401.2267v3)

Published 10 Jan 2014 in math.ST and stat.TH

Abstract: We compare several confidence intervals after model selection in the setting recently studied by Berk et al. [Ann. Statist. 41 (2013) 802-837], where the goal is to cover not the true parameter but a certain nonstandard quantity of interest that depends on the selected model. In particular, we compare the PoSI-intervals that are proposed in that reference with the "naive" confidence interval, which is constructed as if the selected model were correct and fixed a priori (thus ignoring the presence of model selection). Overall, we find that the actual coverage probabilities of all these intervals deviate only moderately from the desired nominal coverage probability. This finding is in stark contrast to several papers in the existing literature, where the goal is to cover the true parameter.

Summary

We haven't generated a summary for this paper yet.