Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image reconstruction from few views by L0-norm optimization (1401.1882v1)

Published 9 Jan 2014 in cs.IT, cs.CV, and math.IT

Abstract: The L1-norm of the gradient-magnitude images (GMI), which is the well-known total variation (TV) model, is widely used as regularization in the few views CT reconstruction. As the L1-norm TV regularization is tending to uniformly penalize the image gradient and the low-contrast structures are sometimes over smoothed, we proposed a new algorithm based on the L0-norm of the GMI to deal with the few views problem. To rise to the challenges introduced by the L0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.

Citations (26)

Summary

We haven't generated a summary for this paper yet.