Familles d'equations de Thue-Mahler n'ayant que des solutions triviales (1312.7202v1)
Abstract: Let $K$ be a number field, let $S$ be a finite set of places of $K$ containing the archimedean places and let $\mu$, $\alpha_1,\alpha_2,\alpha_3$ be non--zero elements in $K$. Denote by $\OS$ the ring of $S$--integers in $K$ and by $\OS\times$ the group of $S$--units. Then the set of equivalence classes (namely, up to multiplication by $S$--units) of the solutions $(x,y,z,\varepsilon_1, \varepsilon_2,\varepsilon_3,\varepsilon)\in\OS3\times(\OS\times)4$ of the diophantine equation $$ (X-\alpha_1 E_1 Y) (X-\alpha_2E_2 Y) (X-\alpha_3E_3 Y)Z=\mu E, $$ satisfying $\Card{\alpha_1\varepsilon_1,\alpha_2\varepsilon_2,\alpha_3\varepsilon_3}= 3$, is finite. With the help of this last result, we exhibit new families of Thue-Mahler equations having only trivial solutions. Furthermore, we produce an effective upper bound for the number of these solutions. The proofs of this paper rest heavily on Schmidt's subspace theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.