Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modèle à processus latent et algorithme EM pour la régression non linéaire (1312.6978v1)

Published 25 Dec 2013 in math.ST, cs.LG, stat.ME, stat.ML, and stat.TH

Abstract: A non linear regression approach which consists of a specific regression model incorporating a latent process, allowing various polynomial regression models to be activated preferentially and smoothly, is introduced in this paper. The model parameters are estimated by maximum likelihood performed via a dedicated expecation-maximization (EM) algorithm. An experimental study using simulated and real data sets reveals good performances of the proposed approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.