Papers
Topics
Authors
Recent
2000 character limit reached

On modular computation of Groebner bases with integer coefficients

Published 22 Dec 2013 in math.AC and cs.SC | (1312.6331v1)

Abstract: Let $I_1\subset I_2\subset\dots$ be an increasing sequence of ideals of the ring $\Bbb Z[X]$, $X=(x_1,\dots,x_n)$ and let $I$ be their union. We propose an algorithm to compute the Gr\"obner base of $I$ under the assumption that the Gr\"obner bases of the ideal $\Bbb Q I$ of the ring $\Bbb Q[X]$ and the the ideals $I\otimes(\Bbb Z/m\Bbb Z)$ of the rings $(\Bbb Z/m\Bbb Z)[X]$ are known. Such an algorithmic problem arises, for example, in the construction of Markov and semi-Markov traces on cubic Hecke algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.