Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$p$-adic algorithm for bivariate Gröbner bases (2312.14116v1)

Published 21 Dec 2023 in math.AC and cs.SC

Abstract: We present a $p$-adic algorithm to recover the lexicographic Gr\"obner basis $\mathcal G$ of an ideal in $\mathbb Q[x,y]$ with a generating set in $\mathbb Z[x,y]$, with a complexity that is less than cubic in terms of the dimension of $\mathbb Q[x,y]/\langle \mathcal G \rangle$ and softly linear in the height of its coefficients. We observe that previous results of Lazard's that use Hermite normal forms to compute Gr\"obner bases for ideals with two generators can be generalized to a set of $t\in \mathbb N+$ generators. We use this result to obtain a bound on the height of the coefficients of $\mathcal G$, and to control the probability of choosing a \textit{good} prime $p$ to build the $p$-adic expansion of $\mathcal G$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Topology and arrangement computation of semi-algebraic planar curves. Computer Aided Geometric Design, 25(8):631–651, 2008.
  2. E. A. Arnold. Modular algorithms for computing Gröbner bases. J. Symb. Comp., 35(4):403–419, 2003.
  3. C. W. Ayoub. On constructing bases for ideals in polynomial rings over the integers. Journal of Number Theory, 17(2):204–225, 1983.
  4. An elimination method for solving bivariate polynomial systems: Eliminating the usual drawbacks. In ALENEX, pages 35–47. SIAM, 2011.
  5. Improved algorithm for computing separating linear forms for bivariate systems. In ISSAC’14, pages 75–82, New York, NY, USA, 2014. ACM.
  6. Solving bivariate systems using rational univariate representations. Journal of Complexity, 37:34–75, 2016.
  7. Rational univariate representations of bivariate systems and applications. In ISSAC’13, pages 109–116, New York, NY, USA, 2013. ACM.
  8. B. Buchberger. A note on the complexity of constructing gröbner-bases. In European Conference on Computer Algebra, pages 137–145, New York, NY, USA, 1983. Springer.
  9. A. Conca and G. Valla. Canonical Hilbert-Burch matrices for ideals of k⁢[x,y]𝑘𝑥𝑦k[x,y]italic_k [ italic_x , italic_y ]. Michigan Mathematical Journal, 57:157 – 172, 2008.
  10. X. Dahan. Size of coefficients of lexicographical Groöbner bases: The zero-dimensional, radical and bivariate case. In ISSAC’09, page 119–126, New York, NY, USA, 2009. ACM.
  11. X. Dahan. Lexicographic Gröbner bases of bivariate polynomials modulo a univariate one. Journal of Symbolic Computation, 110:24–65, 2022.
  12. Lifting techniques for triangular decomposition. In Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC ’05, page 108–115, New York, NY, USA, 2005. ACM.
  13. X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC’04, pages 103–110, New York, NY, USA, 2004. ACM.
  14. Bounds for polynomials on algebraic numbers and application to curve topology, 2021.
  15. The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discrete Applied Mathematics, 33(1):73–94, 1991.
  16. On the asymptotic and practical complexity of solving bivariate systems over the reals. J. Symb. Comput., 44(7):818–835, 2009.
  17. G. L. Ebert. Some comments on the modular approach to Gröbner bases. ACM SIGSAM Bull., 17(2):28–32, 1983.
  18. P. Emeliyanenko and M. Sagraloff. On the complexity of solving a bivariate polynomial system. In ISSAC’12, pages 154–161. ACM, 2012.
  19. Real solving of bivariate polynomial systems. In CASC, pages 150–161, New York, NY, USA, 2005. Springer.
  20. Lower bounds for diophantine approximation. J. of Pure and Applied Algebra, 117/118:277–317, 1997.
  21. Straight-line programs in geometric elimination theory. Journal of Pure and Applied Algebra, 124:101–146, 1998.
  22. When polynomial equation systems can be solved fast? In AAECC-11, volume 948 of LNCS, pages 205–231, New York, NY, USA, 1995. Springer.
  23. A Gröbner-free alternative for polynomial system solving. Journal of Complexity, 17(1):154–211, 2001.
  24. L. González-Vega and M. El Kahoui. An improved upper complexity bound for the topology computation of a real algebraic plane curve. Journal of Complexity, 12(4):527 – 544, 1996.
  25. J. A. Howell. Spans in the module ℤmssuperscriptsubscriptℤ𝑚𝑠\mathbb{Z}_{m}^{s}blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT. Linear and Multilinear Algebra, 19(1):67–77, 1986.
  26. Change of basis for 𝔪𝔪\mathfrak{m}fraktur_m-primary ideals in one and two variables. In ISSAC’19, pages 227–234, New York, NY, USA, 2019. ACM.
  27. A. Kobel and M. Sagraloff. Improved complexity bounds for computing with planar algebraic curves. CoRR, abs/1401.5690, 2014.
  28. A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic curves. Journal of Complexity, 31(2):206–236, 2015.
  29. J. Kollar. Sharp effective nullstellensatz. Journal of the American Mathematical Society, 1(4):963–975, 1988.
  30. Rank-sensitive computation of the rank profile of a polynomial matrix. In ISSAC’22, page 351–360, New York, NY, USA, 2022. ACM.
  31. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix. Journal of Complexity, 42:44–71, 2017.
  32. D. Lazard. Ideal bases and primary decomposition: case of two variables. J. Symbolic Comput., 1(3):261–270, 1985.
  33. On the complexity of solving bivariate systems: the case of non-singular solutions. In ISSAC’13, pages 251–258, New York, NY, USA, 2013. ACM.
  34. E. Mehrabi and É. Schost. A softly optimal Monte Carlo algorithm for solving bivariate polynomial systems over the integers. Journal of Complexity, 34:78–128, 2016.
  35. V. Neiger and É. Schost. Computing syzygies in finite dimension using fast linear algebra. Journal of Complexity, 60, 2020.
  36. F. Pauer. On lucky ideals for Gröbner basis computations. J. Symb. Comp., 14(5):471–482, 1992.
  37. F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Representation. Applicable Algebra in Engineering, Communication and Computing, 9(5):433–461, 1999.
  38. F. Rouillier. On solving systems of bivariate polynomials. In ICMS, volume 6327 of Lecture Notes in Computer Science, pages 100–104, New York, NY, USA, 2010. Springer.
  39. É. Schost. Computing parametric geometric resolutions. Applicable Algebra in Engineering, Communication and Computing, 13(5):349–393, 2003.
  40. É. Schost and C. St-Pierre. Newton iteration for lexicographic gröbner bases in two variables. arXiv preprint arXiv:2302.03766, 2023.
  41. A Storjohann. Computation of Hermite and Smith normal forms of matrices. Master’s thesis, University of Waterloo, 1994.
  42. A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH, Zürich, 2000.
  43. W. Trinks. On improving approximate results of Buchberger’s algorithm by Newton’s method. SIGSAM Bull., 18(3):7–11, 1984.
  44. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, third edition, 2013.
  45. F. Winkler. A p𝑝pitalic_p-adic approach to the computation of Gröbner bases. J. Symb. Comput., 6(2/3):287–304, 1988.
Citations (7)

Summary

We haven't generated a summary for this paper yet.