Hodge-theoretic splitting mechanisms for projective maps (in appendix, a letter from P. Deligne) (1312.1169v1)
Abstract: According to the decomposition and relative hard Lefschetz theorems, given a projective map of complex quasi projective algebraic varieties and a relatively ample line bundle, the rational intersection cohomology groups of the domain of the map split into various direct summands. While the summands are canonical, the splitting is certainly not, as the choice of the line bundle yields at least three different splittings by means of three mechanisms in a triangulated category introduced by Deligne. It is known that these three choices yield splittings of mixed Hodge structures. In this paper, we use the relative hard Lefschetz theorem and elementary linear algebra to construct five distinct splittings, two of which seem to be new, and to prove that they are splittings of mixed Hodge structures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.