Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are all Social Networks Structurally Similar? A Comparative Study using Network Statistics and Metrics (1311.2887v2)

Published 30 Oct 2013 in cs.SI

Abstract: The modern age has seen an exponential growth of social network data available on the web. Analysis of these networks reveal important structural information about these networks in particular and about our societies in general. More often than not, analysis of these networks is concerned in identifying similarities among social networks and how they are different from other networks such as protein interaction networks, computer networks and food web. In this paper, our objective is to perform a critical analysis of different social networks using structural metrics in an effort to highlight their similarities and differences. We use five different social network datasets which are contextually and semantically different from each other. We then analyze these networks using a number of different network statistics and metrics. Our results show that although these social networks have been constructed from different contexts, they are structurally similar. We also review the snowball sampling method and show its vulnerability against different network metrics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.