On duality of diameter 2 properties
Abstract: It is known that a Banach space has the strong diameter 2 property (i.e. every convex combination of slices of the unit ball has diameter 2) if and only if the norm on its dual space is octahedral (a notion introduced by Godefroy and Maurey). We introduce two more versions of octahedrality, which turn out to be dual properties to the diameter 2 property and its local version (i.e., respectively, every relatively weakly open subset and every slice of the unit ball has diameter 2). We study stability properties of different types of octahedrality, which, by duality, provide easier proofs of many known results on diameter 2 properties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.