2000 character limit reached
Diameter two properties, convexity and smoothness
Published 1 Jun 2016 in math.FA | (1606.00221v2)
Abstract: We study smoothness and strict convexity of (the bidual) of Banach spaces in the presence of diameter 2 properties. We prove that the strong diameter 2 property prevents the bidual from being strictly convex and being smooth, and we initiate the investigation whether the same is true for the (local) diameter 2 property. We also give characterizations of the following property for a Banach space $X$: "For every slice $S$ of $B_X$ and every norm-one element $x$ in $S$, there is a point $y\in S$ in distance as close to 2 as we want." Spaces with this property are shown to have non-smooth bidual.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.