Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lie Subalgebras of vector fields and the Jacobian Conjecture (1311.0232v1)

Published 1 Nov 2013 in math.AG

Abstract: We study Lie subalgebras $L$ of the vector fields $\mathrm{Vec}{c}({\mathbb A}{2})$ of affine 2-space ${\mathbb A}{2}$ of constant divergence, and we classify those $L$ which are isomorphic to the Lie algebra $\mathfrak{aff}{2}$ of the group $\mathrm{Aff}{2}(K)$ of affine transformations of ${\mathbb A}{2}$. We then show that the following three statements are equivalent: (i) The Jacobian Conjecture holds in dimension 2; (ii) All Lie subalgebras $L \subset \mathrm{Vec}{c}({\mathbb A}{2})$ isomorphic to $\mathfrak{aff}{2}$ are conjugate under $\mathrm{Aut}({\mathbb A}{2})$; (iii) All Lie subalgebras $L \subset \mathrm{Vec}{c}({\mathbb A}{2})$ isomorphic to $\mathfrak{aff}{2}$ are algebraic.

Citations (2)

Summary

We haven't generated a summary for this paper yet.