Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A special case of the two-dimensional Jacobian Conjecture (1606.00426v2)

Published 31 May 2016 in math.AC

Abstract: Let $f: \mathbb{C}[x,y] \to \mathbb{C}[x,y]$ be a $\mathbb{C}$-algebra endomorphism having an invertible Jacobian. We show that for such $f$, if, in addition, the group of invertible elements of $\mathbb{C}[f(x),f(y),x][1/v] \subset \mathbb{C}(x,y)$ is contained in $\mathbb{C}(f(x),f(y))-0$, then $f$ is an automorphism. Here $v \in \mathbb{C}[f(x),f(y)]-0$ is such that $y = u/v$, with $u \in \mathbb{C}[f(x),f(y),x]-0$. Keller's theorem (in dimension two) follows immediately, since Keller's condition $\mathbb{C}(f(x),f(y))=\mathbb{C}(x,y)$ implies that the group of invertible elements of $\mathbb{C}[f(x),f(y),x][1/v]$ is contained in $\mathbb{C}(x,y)-0 = \mathbb{C}(f(x),f(y))-0$.

Summary

We haven't generated a summary for this paper yet.