Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning Framework for Opportunistic Routing in WSNs (1310.8467v1)

Published 31 Oct 2013 in cs.NI and cs.LG

Abstract: Routing packets opportunistically is an essential part of multihop ad hoc wireless sensor networks. The existing routing techniques are not adaptive opportunistic. In this paper we have proposed an adaptive opportunistic routing scheme that routes packets opportunistically in order to ensure that packet loss is avoided. Learning and routing are combined in the framework that explores the optimal routing possibilities. In this paper we implemented this Reinforced learning framework using a customer simulator. The experimental results revealed that the scheme is able to exploit the opportunistic to optimize routing of packets even though the network structure is unknown.

Summary

We haven't generated a summary for this paper yet.