Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Extensive Report on Cellular Automata Based Artificial Immune System for Strengthening Automated Protein Prediction (1310.4342v1)

Published 16 Oct 2013 in cs.AI and cs.CE

Abstract: Artificial Immune System (AIS-MACA) a novel computational intelligence technique is can be used for strengthening the automated protein prediction system with more adaptability and incorporating more parallelism to the system. Most of the existing approaches are sequential which will classify the input into four major classes and these are designed for similar sequences. AIS-MACA is designed to identify ten classes from the sequences that share twilight zone similarity and identity with the training sequences with mixed and hybrid variations. This method also predicts three states (helix, strand, and coil) for the secondary structure. Our comprehensive design considers 10 feature selection methods and 4 classifiers to develop MACA (Multiple Attractor Cellular Automata) based classifiers that are build for each of the ten classes. We have tested the proposed classifier with twilight-zone and 1-high-similarity benchmark datasets with over three dozens of modern competing predictors shows that AIS-MACA provides the best overall accuracy that ranges between 80% and 89.8% depending on the dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.