Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

The Colored Hadwiger Transversal Theorem in $\mathbb R^d$ (1310.4226v1)

Published 15 Oct 2013 in math.MG

Abstract: Hadwiger's transversal theorem gives necessary and sufficient conditions for a family of convex sets in the plane to have a line transversal. A higher dimensional version was obtained by Goodman, Pollack and Wenger, and recently a colorful version appeared due to Arocha, Bracho and Montejano. We show that it is possible to combine both results to obtain a colored version of Hadwiger's theorem in higher dimensions. The proofs differ from the previous ones and use a variant of the Borsuk-Ulam theorem. To be precise, we prove the following. Let $F$ be a family of convex sets in $\mathbb Rd$ in bijection with a family $P$ of points in $\mathbb R{d-1}$. Assume that there is a coloring of $F$ with sufficiently many colors such that any colorful Radon partition of points in $P$ corresponds to a colorful Radon partition of sets in $F$. Then some monochromatic subfamily of $F$ has a hyperplane transversal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube