Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Countably Colorful Hyperplane Transversal (2402.10012v1)

Published 15 Feb 2024 in math.CO and cs.CG

Abstract: Let $\left{ \mathcal{F}{n}\right}{n \in \mathbb{N}}$ be an infinite sequence of families of compact connected sets in $\mathbb{R}{d}$. An infinite sequence of compact connected sets $\left{ B_{n} \right}{n\in \mathbb{N}}$ is called heterochromatic sequence from $\left{ \mathcal{F}{n}\right}{n \in \mathbb{N}}$ if there exists an infinite sequence $\left{ i{n} \right}{n\in \mathbb{N}}$ of natural numbers satisfying the following two properties: (a) ${i{n}}{n\in \mathbb{N}}$ is a monotonically increasing sequence, and (b) for all $n \in \mathbb{N}$, we have $B{n} \in \mathcal{F}{i_n}$. We show that if every heterochromatic sequence from $\left{ \mathcal{F}{n}\right}{n \in \mathbb{N}}$ contains $d+1$ sets that can be pierced by a single hyperplane then there exists a finite collection $\mathcal{H}$ of hyperplanes from $\mathbb{R}{d}$ that pierces all but finitely many families from $\left{ \mathcal{F}{n}\right}{n \in \mathbb{N}}$. As a direct consequence of our result, we get that if every countable subcollection from an infinite family $\mathcal{F}$ of compact connected sets in $\mathbb{R}{d}$ contains $d+1$ sets that can be pierced by a single hyperplane then $\mathcal{F}$ can be pierced by finitely many hyperplanes. To establish the optimality of our result we show that, for all $d \in \mathbb{N}$, there exists an infinite sequence $\left{ \mathcal{F}{n}\right}{n \in \mathbb{N}}$ of families of compact connected sets satisfying the following two conditions: (1) for all $n \in \mathbb{N}$, $\mathcal{F}{n}$ is not pierceable by finitely many hyperplanes, and (2) for any $m \in \mathbb{N}$ and every sequence $\left{B_n\right}_{n=m}{\infty}$ of compact connected sets in $\mathbb{R}d$, where $B_i\in\mathcal{F}_i$ for all $i \geq m$, there exists a hyperplane in $\mathbb{R}d$ that pierces at least $d+1$ sets in the sequence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Helly’s Theorem: New Variations and Applications. Algebraic and Geometric Methods in Discrete Mathematics, 685:55–95, 2017.
  2. N. Alon and D. J. Kleitman. Piercing Convex Sets and the Hadwiger-Debrunner (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-Problem. Advances in Mathematics, 96(1):103–112, 1992.
  3. N. Alon and G. Kalai. Bounding the Piercing Number. Discrete & Computational Geometry, 13:245–256, 1995.
  4. Transversal numbers for hypergraphs arising in geometry. Advances in Applied Mathematics, 29(1):79–101, 2002.
  5. Colourful and Fractional (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-Theorems. Discrete & Computational Geometry, 51:628–642, 2014.
  6. I. Bárány and G. Kalai. Helly-type Problems. Bulletin of the American Mathematical Society, 59(4):471–502, 2022.
  7. Heterochromatic Geometric Transversals for Convex Sets. CoRR, abs/2212.14091, 2023.
  8. Stabbing boxes with finitely many axis-parallel lines and flats. CoRR, abs/2308.10479, 2023.
  9. H. Hadwiger and H. Debrunner. Über eine Variante zum Hellyschen Satz. Archiv der Mathematik, 8(4):309–313, 1957.
  10. A. Jung and D. Pálvölgyi. k𝑘kitalic_k-dimensional transversals for balls. CoRR, abs/2311.15646, 2023.
  11. C. Keller and M. A. Perles. An (ℵ0,k+2)subscriptℵ0𝑘2(\aleph_{0},k+2)( roman_ℵ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k + 2 )-Theorem for k𝑘kitalic_k-Transversals. In Proceedings of the 38th International Symposium on Computational Geometry, SoCG, volume 224, pages 50:1–50:14, 2022.
  12. C. Keller and M. A. Perles. An (ℵ0,k+2)subscriptℵ0𝑘2(\aleph_{0},k+2)( roman_ℵ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k + 2 )-Theorem for k𝑘kitalic_k-Transversals. CoRR, abs/2306.02181, 2023.

Summary

We haven't generated a summary for this paper yet.