Papers
Topics
Authors
Recent
2000 character limit reached

The Jeffreys-Lindley Paradox and Discovery Criteria in High Energy Physics (1310.3791v6)

Published 14 Oct 2013 in stat.ME and physics.data-an

Abstract: The Jeffreys-Lindley paradox displays how the use of a p-value (or number of standard deviations z) in a frequentist hypothesis test can lead to an inference that is radically different from that of a Bayesian hypothesis test in the form advocated by Harold Jeffreys in the 1930s and common today. The setting is the test of a well-specified null hypothesis (such as the Standard Model of elementary particle physics, possibly with "nuisance parameters") versus a composite alternative (such as the Standard Model plus a new force of nature of unknown strength). The p-value, as well as the ratio of the likelihood under the null hypothesis to the maximized likelihood under the alternative, can strongly disfavor the null hypothesis, while the Bayesian posterior probability for the null hypothesis can be arbitrarily large. The academic statistics literature contains many impassioned comments on this paradox, yet there is no consensus either on its relevance to scientific communication or on its correct resolution. The paradox is quite relevant to frontier research in high energy physics. This paper is an attempt to explain the situation to both physicists and statisticians, in the hope that further progress can be made.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.