Papers
Topics
Authors
Recent
2000 character limit reached

History and Nature of the Jeffreys-Lindley Paradox (2111.10191v2)

Published 19 Nov 2021 in stat.ME, math.ST, stat.OT, and stat.TH

Abstract: The Jeffreys-Lindley paradox exposes a rift between Bayesian and frequentist hypothesis testing that strikes at the heart of statistical inference. Contrary to what most current literature suggests, the paradox was central to the Bayesian testing methodology developed by Sir Harold Jeffreys in the late 1930s. Jeffreys showed that the evidence against a point-null hypothesis $\mathcal{H}_0$ scales with $\sqrt{n}$ and repeatedly argued that it would therefore be mistaken to set a threshold for rejecting $\mathcal{H}_0$ at a constant multiple of the standard error. Here we summarize Jeffreys's early work on the paradox and clarify his reasons for including the $\sqrt{n}$ term. The prior distribution is seen to play a crucial role; by implicitly correcting for selection, small parameter values are identified as relatively surprising under $\mathcal{H}_1$. We highlight the general nature of the paradox by presenting both a fully frequentist and a fully Bayesian version. We also demonstrate that the paradox does not depend on assigning prior mass to a point hypothesis, as is commonly believed.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.