Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Bayesian Logistic Supervised Topic Models with Data Augmentation (1310.2408v1)

Published 9 Oct 2013 in cs.LG, cs.CL, stat.AP, and stat.ML

Abstract: Supervised topic models with a logistic likelihood have two issues that potentially limit their practical use: 1) response variables are usually over-weighted by document word counts; and 2) existing variational inference methods make strict mean-field assumptions. We address these issues by: 1) introducing a regularization constant to better balance the two parts based on an optimization formulation of Bayesian inference; and 2) developing a simple Gibbs sampling algorithm by introducing auxiliary Polya-Gamma variables and collapsing out Dirichlet variables. Our augment-and-collapse sampling algorithm has analytical forms of each conditional distribution without making any restricting assumptions and can be easily parallelized. Empirical results demonstrate significant improvements on prediction performance and time efficiency.

Citations (14)

Summary

We haven't generated a summary for this paper yet.