Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Protein Sequence Similarity Search using Locality-Sensitive Hashing and MapReduce (1310.0883v1)

Published 3 Oct 2013 in cs.DC and cs.CE

Abstract: Metagenomics is the study of environments through genetic sampling of their microbiota. Metagenomic studies produce large datasets that are estimated to grow at a faster rate than the available computational capacity. A key step in the study of metagenome data is sequence similarity searching which is computationally intensive over large datasets. Tools such as BLAST require large dedicated computing infrastructure to perform such analysis and may not be available to every researcher. In this paper, we propose a novel approach called ScalLoPS that performs searching on protein sequence datasets using LSH (Locality-Sensitive Hashing) that is implemented using the MapReduce distributed framework. ScalLoPS is designed to scale across computing resources sourced from cloud computing providers. We present the design and implementation of ScalLoPS followed by evaluation with datasets derived from both traditional as well as metagenomic studies. Our experiments show that with this method approximates the quality of BLAST results while improving the scalability of protein sequence search.

Citations (4)

Summary

We haven't generated a summary for this paper yet.