Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward the Coevolution of Novel Vertical-Axis Wind Turbines (1308.3136v2)

Published 13 Aug 2013 in cs.NE, cs.AI, and cs.CE

Abstract: The production of renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under fan generated wind conditions. Initially a conventional evolutionary algorithm is used to explore the design space of a single wind turbine and later a cooperative coevolutionary algorithm is used to explore the design space of an array of wind turbines. Artificial neural networks are used throughout as surrogate models to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Richard J. Preen (16 papers)
  2. Larry Bull (61 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.